切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 145 -151. doi: 10.3877/cma.j.issn.1674-3903.2025.03.005

论著

基因编辑猪-恒河猴异种心脏移植免疫抑制方案实验研究
戴自强1, 杜保罗1, 任志鹏1, 王欢1, 张根1, 李尚轩1, 何东升1, 崔官正1, 李欣1, 潘登科2, 李巅远1,()   
  1. 1215000 苏州,南京医科大学姑苏学院附属苏州医院心血管外科
    2610041 成都,成都中科奥格生物科技有限公司
  • 收稿日期:2024-11-20 出版日期:2025-06-25
  • 通信作者: 李巅远
  • 基金资助:
    苏州市姑苏卫生人才计划(GSW2022065); 苏州市临床重点病种诊疗技术专项项目(LCZX202211); 南京医科大学姑苏学院引进人才项目(GSRCKY20210101); 南京医科大学姑苏学院异种器官移植专项(GSKY20240801); 苏州市立医院"科教兴卫"异种器官移植专项(SZSLYYZX2024001); 江苏省研究生科研创新计划项目(JX13414310)

Experimental study on immunosuppression protocol for cardiac xenotransplantation using gene-edited pig and rhesus monkey

Ziqiang Dai1, Baoluo Du1, Zhipeng Ren1, Huan Wang1, Gen Zhang1, Shangxuan Li1, Dongsheng He1, Guanzheng Cui1, Xin Li1, Dengke Pan2, Dianyuan Li1,()   

  1. 1Department of Cardiovascular Surgery, Suzhou Hospital Affiliated with Gusu College, Nanjing Medical University, Suzhou 215000, China
    2Chengdu Aoge Biotechnology Co, Ltd., Chengdu 610041, China
  • Received:2024-11-20 Published:2025-06-25
  • Corresponding author: Dianyuan Li
引用本文:

戴自强, 杜保罗, 任志鹏, 王欢, 张根, 李尚轩, 何东升, 崔官正, 李欣, 潘登科, 李巅远. 基因编辑猪-恒河猴异种心脏移植免疫抑制方案实验研究[J/OL]. 中华移植杂志(电子版), 2025, 19(03): 145-151.

Ziqiang Dai, Baoluo Du, Zhipeng Ren, Huan Wang, Gen Zhang, Shangxuan Li, Dongsheng He, Guanzheng Cui, Xin Li, Dengke Pan, Dianyuan Li. Experimental study on immunosuppression protocol for cardiac xenotransplantation using gene-edited pig and rhesus monkey[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2025, 19(03): 145-151.

目的

探讨基因编辑猪-恒河猴异种心脏移植实验免疫抑制方案及其效果,为异种器官移植免疫抑制方案制订提供参考。

方法

经表型鉴定、补体依赖的细胞毒性(CDC)实验以及IgG、IgM结合实验等方式,选取双基因敲除供体猪(耳号4207)和恒河猴(实验动物备案号382350)作为实验动物。手术方式为异位心脏移植,免疫抑制方案包括免疫诱导期与免疫抑制维持期。

结果

于2023年12月16日实施基因编辑猪-恒河猴异位心脏移植术,手术过程顺利,供、受体心脏均成功复搏。受体术后一般情况良好,术后第9天(T+9)因左下肢缺血坏死行左下肢截肢术。受体猴累计存活46 d,死亡原因可能为慢性排斥反应致供心功能衰退以及T+46时对受体猴行心肌组织活检前麻醉药物给量过多。受体经免疫抑制后,白细胞、淋巴细胞均处于稳定且较低水平,CDC稳定在4%以下;受体猴流式细胞分析可见T+46较移植前1 d,以CD19为表面标志物的B细胞和以CD3为表面标志物的T细胞较实验前明显减少。受体猴猪心肌和猴心肌病理检测结果表明,B细胞表面标志物CD19与T细胞表面标志物CD3染色几乎不可见,补体激活标志物C4D染色较浅,巨噬细胞表面标志物CD68、IgG和IgM着色频率偏多。

结论

本实验采用的免疫抑制方案可有效抑制超急性与急性排斥反应,为未来异种器官移植提供了可行的免疫抑制方案参考。

Objective

To explore the immunosuppressive protocol and its effect in the gene-edited pig-rhesus monkey xenotransplantation experiment, and to provide a reference for the formulation of immunosuppressive protocol for xenogeneic organ transplantation.

Methods

Through preoperative matching experiments including phenotypic identification, complement-dependent cytotoxicity (CDC) experiment, and IgG and IgM binding experiments and so on, a double-gene knockout donor pig (lot number 4207) and a rhesus monkey (experimental animal registration number 382350) were selected as experimental animals. An ectopic heart transplantation surgery was chosen for transplantation. The immunosuppressive protocol was divided into the induction period and the maintenance period of immunosuppression.

Results

On December 16, 2023, the gene-edited pig-rhesus monkey ectopic heart transplantation surgery was performed successfully. The surgical process went on smoothly, and both the donor and recipient hearts successfully resumed beating. The general condition of the recipient was good after the surgery. On the 9th day after the surgery (T+ 9), due to ischemic necrosis of the left lower limb, a left lower limb amputation surgery was performed. The final survival time of the recipient monkey was 46 d. The possible cause of death was chronic rejection-induced decline in donor heart function and excessive dosage of anesthetic drugs administered to the recipient monkey before the myocardial tissue biopsy at T+ 46. After immunosuppression, the white blood cells and lymphocytes of the recipient were in a stable and low level, and the CDC reached steady state, settling below 4%. The flow cytometry analysis results of the recipient monkey showed that compared with 1 d before transplantation, the B cells with CD19 as the surface marker and T cells with CD3 as the surface marker were significantly reduced in T+ 46. The pathological examination results of the pig heart and rhesus monkey heart after the recipient′s death indicated that the staining of B cell surface marker CD19 and T cell surface marker CD3 was almost invisible, and the staining of complement activation marker C4D was relatively shallow; the staining frequency of macrophage surface marker CD68, IgG, and IgM was relatively higher.

Conclusion

The immunosuppressive protocol used in this experiment effectively inhibited hyperacute and acute rejection reactions, providing a feasible immunosuppressive protocol reference for future xenogeneic organ transplantation.

表1 供体巴马小型猪一般资料
表2 受体恒河猴一般资料
图1 耳号4207和耳号4164供体巴马小型猪基因表型鉴定注:a、b、c、d和e依次为α-gal、sda、Neu5Gc、CD55和CD46蛋白表达图;α-gal. α-1,3-半乳糖基转移酶;sda. Sda血型抗原;Neu5Gc. N-乙酰神经氨酸;黑色、黄色、蓝色和红色波形依次为人源基因、4207供体猪基因、4164供体猪基因和3982野生猪基因的表达水平;横坐标为为细胞数目、纵坐标为荧光强度;荧光标记包括FITC (异硫氰酸荧光素)、PE (藻红蛋白)和APC (别藻蓝蛋白)
图2 供体猪与受体猴CDC实验注:CDC.补体依赖的细胞毒性;NC.阴性对照组;C.外周血单个核细胞与兔补体孵育对照组
图3 供体猪与受体猴IgG和IgM结合实验注:NC.阴性对照组;a.供体猪与受体猴IgG结合实验;b.供体猪与受体猴IgM结合实验
表3 移植术后46 d内受体猴移植后CDC、IgG和IgM抗体变化情况
图4 移植术后46 d内受体猴移植后体内血细胞水平变化情况
图5 受体猴移植前1天及术后第46天外周血流式细胞术检测结果注:a和c均为对照组;b和d分别为移植前1天和术后第46天外周血流式细胞术检测结果
图6 受体猴猪心肌和猴心肌组织病理HE染色结果(×400)注:a和b依次为猪和猴心肌组织;黑色箭头示局灶性心肌细胞坏死;红色箭头示炎性细胞浸润;黄色箭头示纤维细胞增生修复
图7 受体猴猪心肌组织免疫组织化学染色结果(×200)注:a.阴性对照组;b.C4D; c.CD3; d.CD19; e.CD68; f.IgG; g.IgM
图8 受体猴猴心肌组织免疫组织化学染色结果(×200)注:a.阴性对照组;b.C4D; c.CD3; d.CD19; e.CD68; f.IgG; g.IgM
1
Lewis A, Koukoura A, Tsianos GI, et al. Organ donation in the US and Europe: the supply vs demand imbalance[J]. Transplant Rev (Orlando), 2021, 35(2): 100585.
2
Cooper DKC, Ekser B, Tector AJ. A brief history of clinical xenotransplantation[J]. Int J Surg, 2015, 23 (Pt B):205-210.
3
Habibabady Z, Mcgrath G, Kinoshita K, et al. Antibody-mediated rejection in xenotransplantation: can it be prevented or reversed?[J]. Xenotransplantation, 2023, 30(4): e12816.
4
Shimizu A, Yamada K, Robson SC, et al. Pathologic characteristics of transplanted kidney xenografts[J]. J Am Soc Nephrol, 2012, 23(2): 225-235.
5
Calabrese DR, Lanier LL, Greenland JR. Natural killer cells in lung transplantation[J]. Thorax, 2019, 74(4): 397-404.
6
Cadili A, Kneteman N. The role of macrophages in xenograft rejection[J]. Transplant Proc, 2008, 40(10): 3289-3293.
7
Hibbs JB Jr, Taintor RR, Vavrin Z, et al. Nitric oxide: a cytotoxic activated macrophage effector molecule[J]. Biochem Biophys Res Commun, 1988, 157(1): 87-94.
8
Sacks SH, Chowdhury P, Zhou W. Role of the complement system in rejection[J]. Curr Opin Immunol, 2003, 15(5): 487-492.
9
Wu M, Jia BB, Li MF. Complement C3 and activated fragment C3a are involved in complement activation and anti-bacterial immunity[J]. Front Immunol, 2022, 13:813173.
10
Wang HT, Maeda A, Sakai R, et al. Human CD31 on porcine cells suppress xenogeneic neutrophil-mediated cytotoxicity via the inhibition of NETosis[J]. Xenotransplantation, 2018, 25(5): e12396.
11
Scalea J, Hanecamp I, Robson SC, et al. T-cell-mediated immunological barriers to xenotransplantation[J]. Xenotransplantation, 2012, 19(1): 23-30.
12
Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance[J]. Immunol Rev, 2014, 258(1): 241-258.
13
Samy KP, Butler JR, Li P, et al. The role of costimulation blockade in solid organ and islet xenotransplantation[J]. J Immunol Res, 2017, 2017:8415205.
14
Mardomi A, Mohammadi N, Khosroshahi HT, et al. An update on potentials and promises of T cell co-signaling molecules in transplantation[J]. J Cell Physiol, 2020, 235(5): 4183-4197.
15
Shin JS, Kim JM, Min BH, et al. Pre-clinical results in pig-to-non-human primate islet xenotransplantation using anti-CD40 antibody (2C10R4)-based immunosuppression[J]. Xenotransplantation, 2018, 25(1): 10.1111/xen.12356.
16
Tanemura M, Yin D, Chong AS, et al. Differential immune responses to alpha-gal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation[J]. J Clin Invest, 2000, 105(3): 301-310.
17
Li S, Yan Y, Lin Y, et al. Rapidly induced, T-cell independent xenoantibody production is mediated by marginal zone B cells and requires help from NK cells[J]. Blood, 2007, 110(12): 3926-3935.
18
Shimizu I, Kawahara T, Haspot F, et al. B-cell extrinsic CR1/CR2 promotes natural antibody production and tolerance induction of anti-alphaGAL-producing B-1 cells[J]. Blood, 2007, 109(4): 1773-1781.
19
Gonzalez-Stawinski GV, Davis RD Jr. Rituximab as monotherapy for elicited xenoreactive antibody responses[J]. J Heart Lung Transplant, 2006, 25(12): 1462-1466.
20
Deng J, Yang L, Wang Z, et al. Advance of genetically modified pigs in xeno-transplantation[J]. Front Cell Dev Biol, 2022, 10:1033197.
21
Yue Y, Xu W, Kan Y, et al. Extensive germline genome engineering in pigs[J]. Nat Biomed Eng, 2021, 5(2): 134-143.
22
Cooper DKC, Foote JB, Javed M, et al. Initial evidence that blockade of the CD40/CD154 costimulation pathway alone is sufficient as maintenance therapy in xenotransplantation[J]. Xenotransplantation, 2021, 28(6): e12721.
23
Menard MT, Schwarze ML, Allan JS, et al. Composite " thymoheart" transplantation improves cardiac allograft survival[J]. Am J Transplant, 2004, 4(1): 79-86.
24
Yamada K, Shimizu A, Ierino FL, et al. Thymic transplantation in miniature swine. I. Development and function of the " thymokidney" [J]. Transplantation, 1999, 68(11): 1684-1692.
25
Sykes M. Hematopoietic cell transplantation for tolerance induction: animal models to clinical trials[J]. Transplantation, 2009, 87(3): 309-316.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 唐璐, 徐静, 樊俊, 张哲, 唐莉娟, 罗文田, 徐琰. 唾液酸结合Ig样凝集素15对三阴性乳腺癌细胞增殖、迁移和侵袭的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(02): 93-101.
[3] 翟延荣, 朱亚萍, 张秀珍, 张雨凡, 钟晓娟, 鲁香月, 赵嵌嵌, 邹俊. 硅橡胶封闭式负压引流系统对猪急性皮肤损伤的疗效观察[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 148-154.
[4] 周铖, 袁野, 张鹏, 蔡明, 陈俊华, 尹玉平, 李伟, 向帆, 李钢, 陶凯雄, 王征, 王国斌. 小肠移植新时期:成就与挑战并存[J/OL]. 中华普外科手术学杂志(电子版), 2022, 16(06): 703-706.
[5] 艾紫叶, 李玲, 何重香, 黄伟, 叶啟发. 猪器官异种移植研究进展[J/OL]. 中华移植杂志(电子版), 2023, 17(03): 186-191.
[6] 任明仕, 王明岩, 董士勇, 彭江, 申华, 刘冰, 崔梦一, 成楠, 刘博罕, 邱实, 张涛, 任延玲, 魏红江, 宋翔宇, 杨博尧, 王凯, 熊兴, 王嵘. 人源化基因修饰猪-猴异种心脏移植的实验研究[J/OL]. 中华移植杂志(电子版), 2022, 16(06): 329-338.
[7] 任明仕, 王嵘, 王明岩, 张丽月, 成楠, 吴远斌. 异种心脏移植基因修饰策略及围手术期管理研究进展[J/OL]. 中华移植杂志(电子版), 2022, 16(03): 183-189.
[8] 杨锦然, 李新长, 傅俊, 杨华, 张友福, 龙成美. 猪-人异种心脏移植展望[J/OL]. 中华移植杂志(电子版), 2021, 15(06): 375-382.
[9] 陈耀, 谭晓宇, 雷志斌, 王春政, 乔明蕊, 李鹏, 何锡然, 邝伟键, 郭家钘, 陈素平, 欧阳青, 何洹, 陈建雄, 霍枫. 便携式在体机械灌注设备运行稳定性及保护无心跳供体器官的实验研究[J/OL]. 中华移植杂志(电子版), 2020, 14(06): 355-360.
[10] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[11] 赵坤, 陈凯天, 王悦, 杨霄, 葛芊芊, 韩帅, 张浩然, 孙培健, 刘傲轩, 何江弘. 脑深部太赫兹刺激对麻醉下恒河猴脑功能的调控作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 100-107.
[12] 张秋玥, 程羽, 牛雨田, 唐茂芝, 张克勤, 张懿, 郭亚楠, 涂增. 肾移植与人体微生态的相关性研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 207-213.
[13] 梁晓宁, 吕朝阳, 郭瑞君. 床旁超声在同期胰肾联合移植治疗I型糖尿病术后的检查思路与探讨[J/OL]. 中华临床医师杂志(电子版), 2022, 16(06): 553-557.
[14] 于佳佳, 张旭霞, 李传友, 刘毅, 唐神结. 规律成簇间隔短回文重复序列及其相关蛋白基因编辑技术在感染性疾病诊断中的应用及其进展[J/OL]. 中华诊断学电子杂志, 2021, 09(01): 62-66.
[15] 刘震宇, 高飞, 张文刚, 李海洋, 冯建聪, 柴宁莉, 令狐恩强. 一种有效的食管ESD 术后狭窄动物模型的构建方法[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(01): 35-40.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?