1 |
Nakao A, Sugimoto R, Billiar TR, et al. Therapeutic antioxidant medical gas[J]. J Clin Biochem Nutr, 2009, 44(1): 1-13.
|
2 |
Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases[J]. Biochim Biophys Acta, 2012, 1820(5): 586-94.
|
3 |
Liu R, Fang X, Meng C, et al. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats[J]. Exp Biol Med (Maywood), 2015,240(9):1214-1222.
|
4 |
Cardinal JS, Zhan J, Wang Y, et al. Oral hydrogen water prevents chronic allograft nephropathy in rats[J]. Kidney Int, 2010,77(2):101-109.
|
5 |
Noda K, Tanaka Y, Shigemura N, et al. Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration[J]. Transpl Int, 2012, 25(12): 1213-1222.
|
6 |
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13(6): 688-694.
|
7 |
Kamimura N, Nishimaki K, Ohsawa I, et al. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice[J]. Obesity (Silver Spring), 2011, 19(7): 1396-1403.
|
8 |
Meng C, Ma L, Niu L, et al. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats[J]. Life Sci, 2016, 151:199-206.
|
9 |
Zhang G, Li Z, Meng C, et al. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period[J]. Transplantation, 2018, 102(8): 1253-1261.
|
10 |
Ishikawa T, Shimada S, Fukai M, et al. Post-reperfusion hydrogen gas treatment ameliorates ischemia reperfusion injury in rat livers from donors after cardiac death: a preliminary study[J]. Surg Today, 2018, 48(12): 1081-1088.
|
11 |
Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury[J]. Am J Transplant, 2008, 8(10): 2015-2024.
|
12 |
Abe T, Li XK, Yazawa K, et al. Hydrogen-rich University of Wisconsin solution attenuates renal cold ischemia-reperfusion injury[J]. Transplantation, 2012, 94(1): 14-21.
|
13 |
Olas B. Hydrogen sulfide in signaling pathways[J]. Clin Chim Acta, 2015,439:212-218.
|
14 |
Wu D, Wang J, Li H, et al. Role of hydrogen sulfide in ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2015: 186908.
|
15 |
Perry MM, Hui CK, Whiteman M, et al. Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2011,45(4):746-752.
|
16 |
Azizi F, Seifi B, Kadkhodaee M, et al. Administration of hydrogen sulfide protects ischemia reperfusion-induced acute kidney injury by reducing the oxidative stress[J]. Ir J Med Sci, 2015, 185(3): 649-654.
|
17 |
Cheng P, Wang F, Chen K, et al. Hydrogen sulfide ameliorates ischemia/reperfusion-induced hepatitis by inhibiting apoptosis and autophagy pathways[J]. Mediators Inflamm, 2014: 935251.
|
18 |
Fries CA, Lawson SD, Wang LC, et al. Composite graft pretreatment with hydrogen sulfide delays the onset of acute rejection[J]. Ann Plast Surg, 2019, 82(4):452-458.
|
19 |
Lobb I, Davison M, Carter D, et al. Hydrogen sulfide treatment mitigates renal allograft ischemia-reperfusion injury during cold storage and improves early transplant kidney function and survival following allogeneic renal transplantation[J]. J Urol, 2015, 194(6): 1806-1815.
|
20 |
Lobb I, Jiang J, Lian D, et al. Hydrogen sulfide protects renal grafts against prolonged cold ischemia-reperfusion injury via specific mitochondrial actions[J]. Am J Transplant, 2017, 17(2): 341-352.
|
21 |
Meng C, Cui X, Qi S, et al. Lung inflation with hydrogen sulfide during the warm ischemia phase ameliorates injury in rat donor lungs via metabolic inhibition after cardiac death[J]. Surgery, 2017, 161(5): 1287-1298.
|
22 |
Sun X, Wang W, Dai J, et al. Donor heart preservation with a novel long-term and slow-releasing hydrogen sulfide system[J]. Nitric Oxide, 2018, 81: 1-10.
|
23 |
Balaban CL, Rodríguez JV, Tiribelli C, et al. The effect of a hydrogen sulfide releasing molecule (Na2S) on the cold storage of livers from cardiac dead donor rats. A study in an ex vivo model[J]. Cryobiology, 2015, 71(1): 24-32.
|
24 |
Masin-Spasovska J, Dohcev S, Stankov O, et al. Can an increased nitric oxide level be accepted as non-invasive marker for sub/acute rejection of the kidney allograft[J]. Int J Artif Organs, 2013, 36(12): 907-912.
|
25 |
Takashima S, Koukoulis G, Inokawa H, et al. Inhaled nitric oxide reduces ischemia-reperfusion injury in rat lungs from non-heart-beating donors[J]. J Thorac Cardiovasc Surg, 2006,132(1):132-139.
|
26 |
Pasero D, Rana NK, Bonato R, et al. Inhaled nitric oxide versus sodium nitroprusside for preoperative evaluation of pulmonary hypertension in heart transplant candidates[J]. Transplant Proc, 2013, 45(7): 2746-2749.
|
27 |
Cornfield DN, Milla CE, Haddad IY, et al. Safety of inhaled nitric oxide after lung transplantation[J]. J Heart Lung Transplant, 2003, 22(8): 903-907.
|
28 |
Shiraishi T, Kawahara K, Shirakusa T, et al. Inhaled nitric oxide does not increase rat pulmonary allograft rejection[J]. J Heart Lung Transplant, 1998, 17(6): 573-577.
|
29 |
Minamoto K, Harada H, Lama VN, et al. Reciprocal regulation of airway rejection by the inducible gas-forming enzymes heme oxygenase and nitric oxide synthase[J]. J Exp Med, 2005, 202(2): 283-294.
|
30 |
Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway[J]. Nat Med, 2000, 6(4): 422-428.
|
31 |
Brouard S, Otterbein LE, Anrather J,et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis[J]. J Exp Med, 2000, 192(7): 1015-1026.
|
32 |
Song R, Mahidhara RS, Liu F, et al. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway[J]. Am J Respir Cell Mol Biol, 2002, 27(5):603-610.
|
33 |
Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis[J]. Nat Med, 2001, 7(5): 598-604.
|
34 |
Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury[J]. Am J Physiol, 1999, 276(4): L688-L694.
|
35 |
Ke B, Buelow R, Shen XD, et al. Heme oxygenase 1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway[J]. Hum Gene Ther, 2002, 13(10): 1189-1899.
|
36 |
Faleo G, Neto JS, Kohmoto J, et al. Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor[J]. Transplantation, 2008, 85(12): 1833-1840.
|
37 |
Sahara H, Shimizu A, Setoyama K, et al. Beneficial effects of perioperative low-dose inhaled carbon monoxide on pulmonary allograft survival in MHC-inbred CLAWN miniature swine[J]. Transplantation, 2010, 90(12): 1336-1343.
|
38 |
张松林,孙宗全,于利,等. 诱导体内产生一氧化碳对小鼠心脏移植排斥反应的抑制作用[J]. 中华器官移植杂志,2013, 33(4): 241-245.
|
39 |
Meng C, Ma L, Liu J, et al. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury[J]. Exp Biol Med (Maywood), 2016, 241(3):246-254.
|
40 |
Abe T, Yazawa K, Fujino M, et al. High-pressure carbon monoxide preserves rat kidney grafts from apoptosis and inflammation[J]. Lab Invest, 2017, 97(4): 468-477.
|
41 |
高伟,曾宪章,张莉莉,等. 治疗性高碳酸血症对肺移植缺血再灌注损伤后T淋巴细胞的影响[J]. 中华胸心血管外科杂志,2009, 25(2): 128-131.
|
42 |
赵灿,刘冬冬,崔晓光. 治疗性高碳酸血症对巨噬细胞诱发大鼠移植肺急性排斥反应的影响[J]. 中华麻醉学杂志,2013, 33(9): 1085-1088.
|
43 |
Tzeng YS, Wu SY, Peng YJ, et al. Hypercapnic acidosis prolongs survival of skin allografts[J]. J Surg Res, 2015, 195(1):351-359.
|
44 |
王玲,拉佈旦白拉. 允许性高碳酸血症在大鼠肺移植急性排斥反应中对CD4+、CD8+ T细胞的影响[J]. 器官移植,2016, 7(5): 365-369.
|
45 |
Tan J, Liu Y, Jiang T, et al. Effects of hypercapnia on acute cellular rejection after lung transplantation in rats[J]. Anesthesiology, 2018, 128(1): 130-139.
|
46 |
Chi L, Wang N, Yang W, et al. Protection of myocardial ischemia-reperfusion by therapeutic hypercapnia: a mechanism involving improvements in mitochondrial biogenesis and function[J]. J Cardiovasc Transl Res, 2019, 12(5): 467-477.
|
47 |
Tao T, Liu Y, Zhang J, et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model[J]. Brain Res, 2013, 1533: 52-62.
|
48 |
Li AM, Quan Y, Guo YP, et al. Effects of therapeutic hypercapnia on inflammation and apoptosis after hepatic ischemia-reperfusion injury in rats[J]. Chin Med J (Engl), 2010, 123(16):2254-2258.
|
49 |
Korsunsky G. Xenon[J]. Int Anesthesiol Clin, 2015, 53(2): 40-54.
|
50 |
Zhao H, Yoshida A, Xiao W, et al. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats[J]. FASEB J, 2013, 27(10):4076-4088.
|
51 |
Zhao H, Luo X, Zhou Z, et al. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats[J]. Kidney Int, 2014, 85(1): 112-123.
|
52 |
Zhao H, Huang H, Ologunde R, et al. Xenon treatment protects against remote lung injury after kidney transplantation in rats[J]. Anesthesiology, 2015, 122(6): 1312-1326.
|
53 |
Martens A, Montoli M, Faggi G, et al. Argon and xenon ventilation during prolonged ex vivo lung perfusion[J]. J Surg Res, 2016, 201(1): 44-52.
|