切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2019, Vol. 13 ›› Issue (04) : 314 -318. doi: 10.3877/cma.j.issn.1674-3903.2019.04.014

所属专题: 文献

综述

医疗气体在器官移植领域中的应用研究进展
郑盼盼1, 周华成1,()   
  1. 1. 150000 哈尔滨医科大学附属第四医院麻醉科
  • 收稿日期:2019-04-29 出版日期:2019-11-25
  • 通信作者: 周华成
  • 基金资助:
    国家自然科学基金(81570088)

Progress in the application of medical gases in organ transplantation

Panpan Zheng1, Huacheng Zhou1,()   

  1. 1. Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
  • Received:2019-04-29 Published:2019-11-25
  • Corresponding author: Huacheng Zhou
  • About author:
    Corresponding author: Zhou Huacheng, Email:
引用本文:

郑盼盼, 周华成. 医疗气体在器官移植领域中的应用研究进展[J/OL]. 中华移植杂志(电子版), 2019, 13(04): 314-318.

Panpan Zheng, Huacheng Zhou. Progress in the application of medical gases in organ transplantation[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2019, 13(04): 314-318.

器官移植是目前治疗终末期器官衰竭的最有效方案。供器官来源短缺以及移植相关损伤是器官移植领域的主要问题,需完善现有的技术手段或开发新的治疗方法,以提高供器官质量及减轻移植相关损伤。医疗气体是为医疗需求提供解决方案的药物气体分子,包括氢气、硫化氢、一氧化氮、一氧化碳、二氧化碳和氙气等。这些气体在高浓度时可能具有毒性或一定危险性,但在低浓度时可通过抗炎、抗氧化和抗凋亡等作用减轻供器官损伤,发挥一定的治疗作用。本文就近年来医疗气体在器官移植领域的应用研究进展进行综述。

Organ transplantation is the ultimate treatment of end-stage diseases of various organs. Organs shortage and transplantation-induced injury are the main problems in organ transplantation. Existing or new methods need to be developed to improve the quality of donor organs and reduce post-transplantation injury. Medical gases are pharmaceutical gaseous molecules which offer solutions for medical needs, including hydrogen, hydrogen sulfide, nitric oxide, carbon monoxide, carbon dioxide, Xenon and so on. These gases may be harmful or toxic gases at high concentrations, but can be used at low concentrations to reduce organ injury through anti-inflammatory, antioxidant, anti-apoptosis and so on. In this paper, the research progress of these medical gases on organ transplantation will be reviewed.

1
Nakao A, Sugimoto R, Billiar TR, et al. Therapeutic antioxidant medical gas[J]. J Clin Biochem Nutr, 2009, 44(1): 1-13.
2
Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases[J]. Biochim Biophys Acta, 2012, 1820(5): 586-94.
3
Liu R, Fang X, Meng C, et al. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats[J]. Exp Biol Med (Maywood), 2015,240(9):1214-1222.
4
Cardinal JS, Zhan J, Wang Y, et al. Oral hydrogen water prevents chronic allograft nephropathy in rats[J]. Kidney Int, 2010,77(2):101-109.
5
Noda K, Tanaka Y, Shigemura N, et al. Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration[J]. Transpl Int, 2012, 25(12): 1213-1222.
6
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13(6): 688-694.
7
Kamimura N, Nishimaki K, Ohsawa I, et al. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice[J]. Obesity (Silver Spring), 2011, 19(7): 1396-1403.
8
Meng C, Ma L, Niu L, et al. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats[J]. Life Sci, 2016, 151:199-206.
9
Zhang G, Li Z, Meng C, et al. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period[J]. Transplantation, 2018, 102(8): 1253-1261.
10
Ishikawa T, Shimada S, Fukai M, et al. Post-reperfusion hydrogen gas treatment ameliorates ischemia reperfusion injury in rat livers from donors after cardiac death: a preliminary study[J]. Surg Today, 2018, 48(12): 1081-1088.
11
Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury[J]. Am J Transplant, 2008, 8(10): 2015-2024.
12
Abe T, Li XK, Yazawa K, et al. Hydrogen-rich University of Wisconsin solution attenuates renal cold ischemia-reperfusion injury[J]. Transplantation, 2012, 94(1): 14-21.
13
Olas B. Hydrogen sulfide in signaling pathways[J]. Clin Chim Acta, 2015,439:212-218.
14
Wu D, Wang J, Li H, et al. Role of hydrogen sulfide in ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2015: 186908.
15
Perry MM, Hui CK, Whiteman M, et al. Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2011,45(4):746-752.
16
Azizi F, Seifi B, Kadkhodaee M, et al. Administration of hydrogen sulfide protects ischemia reperfusion-induced acute kidney injury by reducing the oxidative stress[J]. Ir J Med Sci, 2015, 185(3): 649-654.
17
Cheng P, Wang F, Chen K, et al. Hydrogen sulfide ameliorates ischemia/reperfusion-induced hepatitis by inhibiting apoptosis and autophagy pathways[J]. Mediators Inflamm, 2014: 935251.
18
Fries CA, Lawson SD, Wang LC, et al. Composite graft pretreatment with hydrogen sulfide delays the onset of acute rejection[J]. Ann Plast Surg, 2019, 82(4):452-458.
19
Lobb I, Davison M, Carter D, et al. Hydrogen sulfide treatment mitigates renal allograft ischemia-reperfusion injury during cold storage and improves early transplant kidney function and survival following allogeneic renal transplantation[J]. J Urol, 2015, 194(6): 1806-1815.
20
Lobb I, Jiang J, Lian D, et al. Hydrogen sulfide protects renal grafts against prolonged cold ischemia-reperfusion injury via specific mitochondrial actions[J]. Am J Transplant, 2017, 17(2): 341-352.
21
Meng C, Cui X, Qi S, et al. Lung inflation with hydrogen sulfide during the warm ischemia phase ameliorates injury in rat donor lungs via metabolic inhibition after cardiac death[J]. Surgery, 2017, 161(5): 1287-1298.
22
Sun X, Wang W, Dai J, et al. Donor heart preservation with a novel long-term and slow-releasing hydrogen sulfide system[J]. Nitric Oxide, 2018, 81: 1-10.
23
Balaban CL, Rodríguez JV, Tiribelli C, et al. The effect of a hydrogen sulfide releasing molecule (Na2S) on the cold storage of livers from cardiac dead donor rats. A study in an ex vivo model[J]. Cryobiology, 2015, 71(1): 24-32.
24
Masin-Spasovska J, Dohcev S, Stankov O, et al. Can an increased nitric oxide level be accepted as non-invasive marker for sub/acute rejection of the kidney allograft[J]. Int J Artif Organs, 2013, 36(12): 907-912.
25
Takashima S, Koukoulis G, Inokawa H, et al. Inhaled nitric oxide reduces ischemia-reperfusion injury in rat lungs from non-heart-beating donors[J]. J Thorac Cardiovasc Surg, 2006,132(1):132-139.
26
Pasero D, Rana NK, Bonato R, et al. Inhaled nitric oxide versus sodium nitroprusside for preoperative evaluation of pulmonary hypertension in heart transplant candidates[J]. Transplant Proc, 2013, 45(7): 2746-2749.
27
Cornfield DN, Milla CE, Haddad IY, et al. Safety of inhaled nitric oxide after lung transplantation[J]. J Heart Lung Transplant, 2003, 22(8): 903-907.
28
Shiraishi T, Kawahara K, Shirakusa T, et al. Inhaled nitric oxide does not increase rat pulmonary allograft rejection[J]. J Heart Lung Transplant, 1998, 17(6): 573-577.
29
Minamoto K, Harada H, Lama VN, et al. Reciprocal regulation of airway rejection by the inducible gas-forming enzymes heme oxygenase and nitric oxide synthase[J]. J Exp Med, 2005, 202(2): 283-294.
30
Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway[J]. Nat Med, 2000, 6(4): 422-428.
31
Brouard S, Otterbein LE, Anrather J,et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis[J]. J Exp Med, 2000, 192(7): 1015-1026.
32
Song R, Mahidhara RS, Liu F, et al. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway[J]. Am J Respir Cell Mol Biol, 2002, 27(5):603-610.
33
Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis[J]. Nat Med, 2001, 7(5): 598-604.
34
Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury[J]. Am J Physiol, 1999, 276(4): L688-L694.
35
Ke B, Buelow R, Shen XD, et al. Heme oxygenase 1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway[J]. Hum Gene Ther, 2002, 13(10): 1189-1899.
36
Faleo G, Neto JS, Kohmoto J, et al. Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor[J]. Transplantation, 2008, 85(12): 1833-1840.
37
Sahara H, Shimizu A, Setoyama K, et al. Beneficial effects of perioperative low-dose inhaled carbon monoxide on pulmonary allograft survival in MHC-inbred CLAWN miniature swine[J]. Transplantation, 2010, 90(12): 1336-1343.
38
张松林,孙宗全,于利,等. 诱导体内产生一氧化碳对小鼠心脏移植排斥反应的抑制作用[J]. 中华器官移植杂志,2013, 33(4): 241-245.
39
Meng C, Ma L, Liu J, et al. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury[J]. Exp Biol Med (Maywood), 2016, 241(3):246-254.
40
Abe T, Yazawa K, Fujino M, et al. High-pressure carbon monoxide preserves rat kidney grafts from apoptosis and inflammation[J]. Lab Invest, 2017, 97(4): 468-477.
41
高伟,曾宪章,张莉莉,等. 治疗性高碳酸血症对肺移植缺血再灌注损伤后T淋巴细胞的影响[J]. 中华胸心血管外科杂志,2009, 25(2): 128-131.
42
赵灿,刘冬冬,崔晓光. 治疗性高碳酸血症对巨噬细胞诱发大鼠移植肺急性排斥反应的影响[J]. 中华麻醉学杂志,2013, 33(9): 1085-1088.
43
Tzeng YS, Wu SY, Peng YJ, et al. Hypercapnic acidosis prolongs survival of skin allografts[J]. J Surg Res, 2015, 195(1):351-359.
44
王玲,拉佈旦白拉. 允许性高碳酸血症在大鼠肺移植急性排斥反应中对CD4、CD8 T细胞的影响[J]. 器官移植,2016, 7(5): 365-369.
45
Tan J, Liu Y, Jiang T, et al. Effects of hypercapnia on acute cellular rejection after lung transplantation in rats[J]. Anesthesiology, 2018, 128(1): 130-139.
46
Chi L, Wang N, Yang W, et al. Protection of myocardial ischemia-reperfusion by therapeutic hypercapnia: a mechanism involving improvements in mitochondrial biogenesis and function[J]. J Cardiovasc Transl Res, 2019, 12(5): 467-477.
47
Tao T, Liu Y, Zhang J, et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model[J]. Brain Res, 2013, 1533: 52-62.
48
Li AM, Quan Y, Guo YP, et al. Effects of therapeutic hypercapnia on inflammation and apoptosis after hepatic ischemia-reperfusion injury in rats[J]. Chin Med J (Engl), 2010, 123(16):2254-2258.
49
Korsunsky G. Xenon[J]. Int Anesthesiol Clin, 2015, 53(2): 40-54.
50
Zhao H, Yoshida A, Xiao W, et al. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats[J]. FASEB J, 2013, 27(10):4076-4088.
51
Zhao H, Luo X, Zhou Z, et al. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats[J]. Kidney Int, 2014, 85(1): 112-123.
52
Zhao H, Huang H, Ologunde R, et al. Xenon treatment protects against remote lung injury after kidney transplantation in rats[J]. Anesthesiology, 2015, 122(6): 1312-1326.
53
Martens A, Montoli M, Faggi G, et al. Argon and xenon ventilation during prolonged ex vivo lung perfusion[J]. J Surg Res, 2016, 201(1): 44-52.
[1] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[2] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[3] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[4] 江文诗, 侯峰忠. 全球视野下中国人体器官捐献事业的高质量发展:2010~2024[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 204-212.
[5] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[6] 尚丽红, 王志华, 张文艳, 朱琳茹, 周华. 内皮粘蛋白抗体与肾移植术后抗体介导排斥反应和移植肾预后的研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 165-170.
[7] 巨春蓉, 门同义, 薛武军. 实体器官移植后难治性/耐药性巨细胞病毒感染诊疗进展[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 86-92.
[8] 裘妃, 高志刚, 汪伟, 王晓豪, 杨子浩, 陈青江, 盛美君, 赵杭燕. 儿童器官获取组织和器官移植管理体系的探索与实践[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 93-97.
[9] 尚丽红, 武小桐, 李宁, 石韶华, 王志华, 朱琳茹, 周华. 非HLA抗体检测方法研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 60-64.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 冯军, 艾麦提·牙森, 梁润斌, 廖志洪, 赵超尘, 谢嘉奋, 朱灿华, 罗燕君, 汪国营. 肝癌肝移植术前应用PD-1抑制剂后发生急性排斥反应一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 88-92.
[12] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[13] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[14] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要